DL: Training Stardist and Cellpose Models#
Date: 2022-05-05
Author: Xingjian Zhang (https://github.com/xjzhaang)
This notebook and the following DL: Benchmark Table is part of a small experiment.
The aim is to build a benchmark table for bioimageloader
’s collection of instance segmentation datasets, using built-in and custom trained models.
In this notebook, we use StarDist and Cellpose with bioimageloader
to train our own models using a combined dataset.
It serves as a demonstration on how you can use bioimageloader
to do model training. The code blocks can be easily modified to adapt to your own tasks.
Changes#
2022-09-14: Add TissueNet
Author: Seongbin Lim (@sbinnee, https://github.com/sbinnee)
(tmp) Setup#
[1]:
# %load_ext autoreload
# %autoreload 2
[2]:
%env CUDA_VISIBLE_DEVICES=2
env: CUDA_VISIBLE_DEVICES=2
[3]:
import tensorflow as tf
gpus = tf.config.list_physical_devices('GPU')
gpus
2022-09-14 20:19:23.331641: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2022-09-14 20:19:24.376168: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
[3]:
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
2022-09-14 20:19:24.376930: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1
2022-09-14 20:19:24.438119: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:d8:00.0 name: Tesla V100-PCIE-32GB computeCapability: 7.0
coreClock: 1.38GHz coreCount: 80 deviceMemorySize: 31.75GiB deviceMemoryBandwidth: 836.37GiB/s
2022-09-14 20:19:24.438153: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2022-09-14 20:19:24.443301: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2022-09-14 20:19:24.443346: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2022-09-14 20:19:24.444161: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2022-09-14 20:19:24.444366: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2022-09-14 20:19:24.445765: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
2022-09-14 20:19:24.446542: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2022-09-14 20:19:24.446662: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2022-09-14 20:19:24.447097: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
[4]:
# memory growth
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
1 Physical GPUs, 1 Logical GPUs
2022-09-14 20:19:24.459351: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-09-14 20:19:24.467646: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
2022-09-14 20:19:24.467960: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:d8:00.0 name: Tesla V100-PCIE-32GB computeCapability: 7.0
coreClock: 1.38GHz coreCount: 80 deviceMemorySize: 31.75GiB deviceMemoryBandwidth: 836.37GiB/s
2022-09-14 20:19:24.467981: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2022-09-14 20:19:24.467997: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2022-09-14 20:19:24.468005: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2022-09-14 20:19:24.468013: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2022-09-14 20:19:24.468020: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2022-09-14 20:19:24.468027: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
2022-09-14 20:19:24.468035: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2022-09-14 20:19:24.468043: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2022-09-14 20:19:24.468402: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
2022-09-14 20:19:24.468425: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2022-09-14 20:19:24.960897: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix:
2022-09-14 20:19:24.960936: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267] 0
2022-09-14 20:19:24.960942: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0: N
2022-09-14 20:19:24.963510: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 30130 MB memory) -> physical GPU (device: 0, name: Tesla V100-PCIE-32GB, pci bus id: 0000:d8:00.0, compute capability: 7.0)
[5]:
# memory limit
# gpus = tf.config.list_physical_devices('GPU')
if gpus:
# Restrict TensorFlow to only allocate 1GB of memory on the first GPU
try:
tf.config.set_logical_device_configuration(
gpus[0],
[tf.config.LogicalDeviceConfiguration(memory_limit=1024)])
logical_gpus = tf.config.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Virtual devices must be set before GPUs have been initialized
print(e)
Virtual devices cannot be modified after being initialized
1. StarDist#
This tutorial is adapted from the github notebook (https://github.com/stardist/stardist/blob/master/examples/2D/2_training.ipynb)
[6]:
# %env CUDA_VISIBLE_DEVICES=0
%env TF_CPP_MIN_LOG_LEVEL=3
#Built-in
import warnings
import logging
import sys
#Ignoring warnings for notebook compilation (might not work)
warnings.filterwarnings('ignore')
logging.getLogger("tensorflow").setLevel(logging.ERROR)
#Bioimageloader and Albumentation
import albumentations as A
from bioimageloader import Config, BatchDataloader, ConcatDataset
from bioimageloader.transforms import SqueezeGrayImageHWC, HWCToCHW
from bioimageloader.collections import (BBBC020, ComputationalPathology, S_BSST265,
DSB2018, FRUNet, BBBC039, BBBC006, Cellpose, LIVECell, TissueNetV1)
#Stardist
from stardist import fill_label_holes, random_label_cmap, calculate_extents
from stardist.matching import matching, matching_dataset
from stardist.models import Config2D, StarDist2D
from csbdeep.utils import Path, normalize
# #Cellpose imports
# import torch
# from cellpose import models
#Other imports
#!pip install matplotlib seaborn pandas tqdm numpy
from tqdm.notebook import tqdm
import numpy as np
env: TF_CPP_MIN_LOG_LEVEL=3
Loading datasets#
First, we load our collection of datasets with instance masks together: DSB2018, ComputationalPathology, BBBC006, BBBC020, BBBC039, S_BSST265, FRUNet, Cellpose and LIVECell.
As each dataset have different numbers of images, we perform data augmentation using albumentations
library for smaller datasets. We invert the ComPath and LIVECell datasets so they look more like the rest.
The datasets are then combined using ConcatDataset
.
[13]:
bbbc020 = BBBC020('./Data/bbbc/020', grayscale=True, image_ch=["nuclei"])
comp = ComputationalPathology('./Data/ComputationalPathology', grayscale=True)
dsb2018 = DSB2018('./Data/DSB2018', grayscale=True, training=True)
sbss = S_BSST265('./Data/BioStudies')
frunet = FRUNet('./Data/FRU_processing')
bbbc006 = BBBC006('./Data/bbbc/006', grayscale=True)
bbbc039 = BBBC039('./Data/bbbc/039')
cellpose = Cellpose('./Data/cellpose', grayscale=True)
livecell = LIVECell('./Data/LIVECell', mask_tif=True, training=True)
tissuenet = TissueNetV1('./Data/tissuenet_1.0/', use_unzipped=True,
image_ch=('nuclei',), anno_ch=('nuclei',), uint8=False)
datasets = [bbbc020, comp, dsb2018, sbss, frunet, bbbc006, bbbc039, cellpose,
livecell, tissuenet]
[14]:
for dset in datasets:
print(f'{dset.acronym:12s}: {len(dset):6d}')
BBBC020 : 20
ComPath : 30
DSB2018 : 670
S_BSST265 : 79
FRUNet : 72
BBBC006 : 768
BBBC039 : 150
Cellpose : 540
LIVECell : 3727
TissueNetV1 : 2601
[15]:
data = tissuenet[0]
[18]:
img = data['image']
[19]:
import cv2
[21]:
img.shape, img.dtype, img.max()
[21]:
((512, 512), dtype('float32'), 1.0)
[22]:
img_rgb = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
[23]:
img_rgb.shape
[23]:
(512, 512, 3)
[ ]:
plt.imshow()
[ ]:
[ ]:
[18]:
import matplotlib.pyplot as plt
[19]:
plt.imshow(data['image'])
[19]:
<matplotlib.image.AxesImage at 0x7fc2a809f1c0>
[ ]:
[7]:
#Transformations
transforms = A.Compose([
A.Resize(256, 256),
SqueezeGrayImageHWC()
])
transforms_compath = A.Compose([
A.Resize(256, 256),
A.InvertImg(p=1.0),
A.OneOf([
A.VerticalFlip(p=0.5),
A.HorizontalFlip(p=0.5),
], p=0.66),
A.OneOf([
A.RandomBrightnessContrast(p=0.2),
A.Rotate(p=0.5, limit=80),
], p=0.66),
SqueezeGrayImageHWC()
])
transforms_livecell = A.Compose([
A.Resize(512, 512),
A.RandomCrop(256,256),
A.InvertImg(p=1.0),
SqueezeGrayImageHWC()
])
transforms_020 = A.Compose([
A.Resize(512, 512),
A.RandomCrop(256,256),
A.OneOf([
A.VerticalFlip(p=0.5),
A.HorizontalFlip(p=0.5),
], p=0.66),
A.OneOf([
A.RandomBrightnessContrast(p=0.2),
A.Rotate(p=0.5, limit=80),
], p=0.66),
SqueezeGrayImageHWC()
])
bbbc020 = BBBC020('./Data/bbbc/020', grayscale=True, image_ch=["nuclei"],
transforms=transforms_020, num_samples=80)
comp = ComputationalPathology('./Data/ComputationalPathology', grayscale=True,
transforms=transforms_compath, num_samples=80)
dsb2018 = DSB2018('./Data/data-science-bowl-2018', grayscale=True, training=True,
transforms=transforms, num_samples=80)
sbss = S_BSST265('./Data/BioStudies',
transforms=transforms, num_samples=80)
frunet = FRUNet('./Data/FRU_processing',
transforms=transforms, num_samples=80)
bbbc006 = BBBC006('./Data/bbbc/006', grayscale=True,
transforms=transforms, num_samples=80)
bbbc039 = BBBC039('./Data/bbbc/039',
transforms=transforms, num_samples=80)
cellpose = Cellpose('./Data/cellpose', grayscale=True,
transforms=transforms, num_samples=80)
livecell = LIVECell('./Data/LIVECell', mask_tif=True, training=True,
transforms=transforms_livecell, num_samples=80)
tissuenet = TissueNetV1('./Data/tissuenet_1.0/', use_unzipped==True,
image_ch=('nuclei',), anno_ch=('nuclei',)
transforms=)
dset = ConcatDataset([bbbc020, comp, dsb2018, sbss, frunet,
bbbc006, bbbc039, cellpose, livecell])
[ ]:
Normalization and train/val split#
We follow StarDist’s sample notebook to perform normalization and train/val split.
[3]:
X = list()
Y = list()
for d in tqdm(dset):
X.append(d["image"])
Y.append(d["mask"])
[4]:
n_channel = 1 if X[0].ndim == 2 else X[0].shape[-1]
axis_norm = (0,1) # normalize channels independently
# axis_norm = (0,1,2) # normalize channels jointly
if n_channel > 1:
print("Normalizing image channels %s." % ('jointly' if axis_norm is None or 2 in axis_norm else 'independently'))
sys.stdout.flush()
X = [normalize(x,1,99.8,axis=axis_norm) for x in tqdm(X)]
Y = [fill_label_holes(y) for y in tqdm(Y)]
assert len(dset) > 1, "not enough training data"
rng = np.random.RandomState(42)
ind = rng.permutation(len(dset))
n_val = max(1, int(round(0.15 * len(ind))))
ind_train, ind_val = ind[:-n_val], ind[-n_val:]
X_val, Y_val = [X[i] for i in ind_val] , [Y[i] for i in ind_val]
X_trn, Y_trn = [X[i] for i in ind_train], [Y[i] for i in ind_train]
print('- training: %3d' % len(X_trn))
print('- validation: %3d' % len(X_val))
- training: 612
- validation: 108
Initialize a stardist model#
[5]:
#Default parameters used in Stardist's own example notebook
n_rays = 32
grid = (2,2)
conf = Config2D (
n_rays = n_rays,
grid = grid,
use_gpu = True,
n_channel_in = 1,
)
#Specify the name and directory of the model
model = StarDist2D(conf, name='stardist_model_1', basedir='stardist_models')
median_size = calculate_extents(list(Y), np.median)
fov = np.array(model._axes_tile_overlap('YX'))
print(f"median object size: {median_size}")
print(f"network field of view : {fov}")
if any(median_size > fov):
print("WARNING: median object size larger than field of view of the neural network.")
Using default values: prob_thresh=0.5, nms_thresh=0.4.
median object size: [16. 13.]
network field of view : [94 93]
Training and optimization#
[7]:
#We train then optimize the thresholds of a stardist model using the default parameters.
#Epochs is set to 1 for demonstration
model.train(X_trn, Y_trn, validation_data=(X_val, Y_val), epochs=1)
model.optimize_thresholds(X_val, Y_val)
100/100 [==============================] - 9s 93ms/step - loss: 1.4590 - prob_loss: 0.3824 - dist_loss: 5.3832 - prob_kld: 0.2577 - dist_relevant_mae: 5.3827 - dist_relevant_mse: 72.6304 - dist_dist_iou_metric: 0.2540 - val_loss: 1.3347 - val_prob_loss: 0.3480 - val_dist_loss: 4.9334 - val_prob_kld: 0.2275 - val_dist_relevant_mae: 4.9328 - val_dist_relevant_mse: 63.9465 - val_dist_dist_iou_metric: 0.2826
Loading network weights from 'weights_best.h5'.
NMS threshold = 0.3: 75%|████▌ | 15/20 [00:56<00:18, 3.78s/it, 0.199 -> 0.020]
NMS threshold = 0.4: 75%|████▌ | 15/20 [01:20<00:26, 5.37s/it, 0.199 -> 0.016]
NMS threshold = 0.5: 75%|████▌ | 15/20 [01:24<00:28, 5.62s/it, 0.199 -> 0.015]
Using optimized values: prob_thresh=0.198454, nms_thresh=0.3.
Saving to 'thresholds.json'.
[7]:
{'prob': 0.19845443151963815, 'nms': 0.3}
2. Cellpose#
Loading datasets#
We follow the same procedures as StarDist, except here we use HWCToCHW
(explained in the previous notebook).
[ ]:
#Transformations
transforms = A.Compose([
A.Resize(256, 256),
HWCToCHW()
])
transforms_compath = A.Compose([
A.Resize(256, 256),
A.InvertImg(p=1.0),
A.OneOf([
A.VerticalFlip(p=0.5),
A.HorizontalFlip(p=0.5),
], p=0.66),
A.OneOf([
A.RandomBrightnessContrast(p=0.2),
A.Rotate(p=0.5, limit=80),
], p=0.66),
HWCToCHW()
])
transforms_livecell = A.Compose([
A.Resize(512, 512),
A.RandomCrop(256,256),
A.InvertImg(p=1.0),
HWCToCHW()
])
transforms_020 = A.Compose([
A.Resize(512, 512),
A.RandomCrop(256,256),
A.OneOf([
A.VerticalFlip(p=0.5),
A.HorizontalFlip(p=0.5),
], p=0.66),
A.OneOf([
A.RandomBrightnessContrast(p=0.2),
A.Rotate(p=0.5, limit=80),
], p=0.66),
HWCToCHW()
])
bbbc020 = BBBC020('./Data/bbbc/020', grayscale=True, image_ch=["nuclei"],
transforms=transforms_020, num_samples=80)
comp = ComputationalPathology('./Data/ComputationalPathology', grayscale=True,
transforms=transforms_compath, num_samples=80)
dsb2018 = DSB2018('./Data/data-science-bowl-2018', grayscale=True, training=True,
transforms=transforms, num_samples=80)
sbss = S_BSST265('./Data/BioStudies',
transforms=transforms, num_samples=80)
frunet = FRUNet('./Data/FRU_processing',
transforms=transforms, num_samples=80)
bbbc006 = BBBC006('./Data/bbbc/006', grayscale=True,
transforms=transforms, num_samples=80)
bbbc039 = BBBC039('./Data/bbbc/039',
transforms=transforms, num_samples=80)
cellpose = Cellpose('./Data/cellpose', grayscale=True,
transforms=transforms, num_samples=80)
livecell = LIVECell('./Data/LIVECell', mask_tif=True, training=True,
transforms=transforms_livecell, num_samples=80)
dset = ConcatDataset([bbbc020, comp, dsb2018, sbss, frunet,
bbbc006, bbbc039, cellpose, livecell])
[ ]:
X = list()
Y = list()
for d in tqdm(dset):
X.append(d["image"])
Y.append(d["mask"])
Train/val split#
For Cellpose, we do not need to normalize the data before training, it is done by specifying normalize = True
in the training parameters.
[ ]:
assert len(dset) > 1, "not enough training data"
rng = np.random.RandomState(42)
ind = rng.permutation(len(dset))
n_val = max(1, int(round(0.15 * len(ind))))
ind_train, ind_val = ind[:-n_val], ind[-n_val:]
X_val, Y_val = [X[i] for i in ind_val] , [Y[i] for i in ind_val]
X_trn, Y_trn = [X[i] for i in ind_train], [Y[i] for i in ind_train]
print('- training: %3d' % len(X_trn))
print('- validation: %3d' % len(X_val))
Initialize model and train#
[ ]:
#We set n_epochs = 1 for demonstration
model = models.CellposeModel(pretrained_model=None, diam_mean=15, gpu=True)
model.train(train_data=X_trn, train_labels=Y_trn, train_files=None,
test_data=X_val, test_labels=Y_val, test_files=None,
normalize = True,
channels = [0,0],
save_path='cellpose_models',
save_every=1,
learning_rate=0.01,
n_epochs=1,
momentum=0.9,
weight_decay=0.00001,
batch_size=32)