Source code for bioimageloader.collections._bbbc006

from functools import cached_property
from pathlib import Path
from typing import Dict, List, Optional, Sequence, Union

import albumentations
import cv2
import numpy as np
import tifffile
from PIL import Image

from ..base import MaskDataset
from ..types import BundledPath
from ..utils import bundle_list, stack_channels_to_rgb


[docs]class BBBC006(MaskDataset): """Human U2OS cells (out of focus) Images were acquired from one 384-well microplate containing U2OS cells stained with Hoechst 33342 markers (to label nuclei) were imaged with an exposure of 15 and 1000 ms for Hoechst and phalloidin respectively, at 20x magnification, 2x binning, and 2 sites per well. For each site, the optimal focus was found using laser auto-focusing to find the well bottom. The automated microscope was then programmed to collect a z-stack of 32 image sets (z = 16 at the optimal focal plane, 15 images above the focal plane, 16 below) with 2 μm between slices. Each image is 696 x 520 pixels in 16-bit TIF format, LZW compression. Each image filename includes either 'w1' to denote Hoechst images or 'w2' to denote phalloidin images. Parameters ---------- root_dir : str Path to root directory output : {'both', 'image', 'mask'}, default: 'both' Change outputs. 'both' returns {'image': image, 'mask': mask}. transforms : albumentations.Compose, optional An instance of Compose (albumentations pkg) that defines augmentation in sequence. num_samples : int, optional Useful when ``transforms`` is set. Define the total length of the dataset. If it is set, it overwrites ``__len__``. grayscale : bool, default: False Convert images to grayscale grayscale_mode : {'equal', 'cv2', Sequence[float]}, default: 'equal' How to convert to grayscale. If set to 'cv2', it follows opencv implementation. Else if set to 'equal', it sums up values along channel axis, then divides it by the number of expected channels. image_ch : {'hoechst', 'phalloidin'}, default: ('hoechst', 'phalloidin') Which channel(s) to load as image. Make sure to give it as a Sequence when choose a single channel. z_ind : int, default: 16 Select one z stack. Default is 16, because 16 is the most in-focus. TIF format, LZW compression. Each image filename includes either 'w1' to denote Hoechst images or 'w2' to denote phalloidin images. Notes ----- - z-stack, z=16 is in-focus ones, sites (s1, s2) - Instance segmented - 384 wells, 2 sites per well; 384 * 2 = 768 images - 2 channels, w1=Hoechst, w2=phalloidin - Two channels usually overlap and when overlapped, it's hard to distinguish two channels anymore. - Saved in UINT16, but UINT12 practically. Max value caps at 4095. References ---------- .. [1] https://bbbc.broadinstitute.org/BBBC006 See Also -------- MaskDataset : Super class Dataset : Base class DatasetInterface : Interface """ # Dataset's acronym acronym = 'BBBC006' _max_val = 4095 # 2**12 def __init__( self, root_dir: str, *, output: str = 'both', transforms: Optional[albumentations.Compose] = None, num_samples: Optional[int] = None, grayscale: bool = False, grayscale_mode: Union[str, Sequence[float]] = 'equal', # specific to this dataset image_ch: Sequence[str] = ('hoechst', 'phalloidin'), z_ind: int = 16, **kwargs ): self._root_dir = root_dir self._output = output self._transforms = transforms self._num_samples = num_samples self._grayscale = grayscale self._grayscale_mode = grayscale_mode # specific to this dataset self.image_ch = image_ch self.z_ind = z_ind if not any([ch in ('hoechst', 'phalloidin') for ch in image_ch]): raise ValueError("Set `anno_ch` in ('hoechst', 'phalloidin') in sequence")
[docs] def get_image(self, p: Union[Path, BundledPath]) -> np.ndarray: if isinstance(p, Path): img = tifffile.imread(p) img = img / np.float32(self._max_val) return cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # 2 channels img = stack_channels_to_rgb(tifffile.imread, p, 2, 0, 1) # UINT12 img = img / np.float32(self._max_val) return img
[docs] def get_mask(self, p: Path) -> np.ndarray: mask = Image.open(p) return np.asarray(mask)
@cached_property def file_list(self) -> Union[List[Path], List[BundledPath]]: key_ch = { 'hoechst': 'w1', 'phalloidin': 'w2', } root_dir = self.root_dir parent = f'BBBC006_v1_images_z_{self.z_ind:02d}' _file_list = sorted(root_dir.glob(f'{parent}/*.tif')) if len(self.image_ch) == 1: return list(filter( lambda p: key_ch[self.image_ch[0]] in p.stem, _file_list)) return bundle_list(_file_list, 2) @cached_property def anno_dict(self) -> Dict[int, Path]: root_dir = self.root_dir parent = 'BBBC006_v1_labels' anno_list = sorted(root_dir.glob(f'{parent}/*.png')) anno_dict = dict((k, v) for k, v in enumerate(anno_list)) return anno_dict