Source code for bioimageloader.collections._bbbc007

from functools import cached_property
from pathlib import Path
from typing import Dict, List, Optional, Sequence, Union, overload

import albumentations
import cv2
import numpy as np
import tifffile
from skimage.util import img_as_float32

from ..base import MaskDataset
from ..types import BundledPath
from ..utils import bundle_list, stack_channels, stack_channels_to_rgb


[docs]class BBBC007(MaskDataset): """Drosophila Kc167 cells Outline annotation Images were acquired using a motorized Zeiss Axioplan 2 and a Axiocam MRm camera, and are provided courtesy of the laboratory of David Sabatini at the Whitehead Institute for Biomedical Research. Each image is roughly 512 x 512 pixels, with cells roughly 25 pixels in dimeter, and 80 cells per image on average. The two channels (DNA and actin) of each image are stored in separate gray-scale 8-bit TIFF files. Parameters ---------- root_dir : str Path to root directory output : {'both', 'image', 'mask'}, default: 'both' Change outputs. 'both' returns {'image': image, 'mask': mask}. transforms : albumentations.Compose, optional An instance of Compose (albumentations pkg) that defines augmentation in sequence. num_samples : int, optional Useful when ``transforms`` is set. Define the total length of the dataset. If it is set, it overwrites ``__len__``. grayscale : bool, default: False Convert images to grayscale grayscale_mode : {'equal', 'cv2', Sequence[float]}, default: 'equal' How to convert to grayscale. If set to 'cv2', it follows opencv implementation. Else if set to 'equal', it sums up values along channel axis, then divides it by the number of expected channels. image_ch : {'DNA', 'actin'}, default: ('DNA', 'actin') Which channel(s) to load as image. Make sure to give it as a Sequence when choose a single channel. Name matches to `anno_ch`. anno_ch : {'DNA', 'actin'}, default: ('DNA',) Which channel(s) to load as annotation. Make sure to give it as a Sequence when choose a single channel. Notes ----- - [4, 5, 11, 14, 15] have 3 channels but they are just all gray scale images. Extra work is required in get_image(). References ---------- .. [1] Jones et al., in the Proceedings of the ICCV Workshop on Computer Vision for Biomedical Image Applications (CVBIA), 2005. .. [2] https://bbbc.broadinstitute.org/BBBC007 See Also -------- MaskDataset : Super class Dataset : Base class DatasetInterface : Interface """ # Dataset's acronym acronym = 'BBBC007' def __init__( self, root_dir: str, *, output: str = 'both', transforms: Optional[albumentations.Compose] = None, num_samples: Optional[int] = None, grayscale: bool = False, grayscale_mode: Union[str, Sequence[float]] = 'equal', # specific to this dataset image_ch: Sequence[str] = ('DNA', 'actin',), anno_ch: Sequence[str] = ('DNA',), **kwargs ): self._root_dir = root_dir self._output = output self._transforms = transforms self._num_samples = num_samples self._grayscale = grayscale self._grayscale_mode = grayscale_mode self.image_ch = image_ch self.anno_ch = anno_ch if not any([ch in ('DNA', 'actin') for ch in image_ch]): raise ValueError("Set `anno_ch` in ('nuclei', 'cells') in sequence") if not any([ch in ('DNA', 'actin') for ch in anno_ch]): raise ValueError("Set `anno_ch` in ('nuclei', 'cells') in sequence") @staticmethod def _imread_handler(p: Path) -> np.ndarray: """Handle irregular images by wrapping tifffile.imread Normally two images in a pair have gray scale and only have one channel. This means that each image array has shape of (height, width). But there are some outliers. For example a pair of images below has 3 channels with all having the same value (height, width, 3). ['BBBC007_v1_images/f113/AS_09125_040701150004_A02f00d0.tif', 'BBBC007_v1_images/f113/AS_09125_040701150004_A02f00d1.tif'] 6 pairs out of 16 have this issue and this wrapper resolves it. """ img = tifffile.imread(p) if img.shape[-1] == 3: return img[..., 0] return img
[docs] def get_image(self, p: Union[Path, BundledPath]) -> np.ndarray: if isinstance(p, Path): img = self._imread_handler(p) img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) else: img = stack_channels_to_rgb(self._imread_handler, p) return img_as_float32(img)
[docs] def get_mask(self, p: Union[Path, BundledPath]) -> np.ndarray: if isinstance(p, Path): mask = tifffile.imread(p) else: mask = stack_channels(tifffile.imread, p) # dtype=bool originally and bool is not well handled by albumentations return 255 * mask.astype(np.uint8)
@cached_property def file_list(self) -> Union[List[Path], List[BundledPath]]: file_list: Union[List[Path], List[List[Path]]] root_dir = self.root_dir parent = 'BBBC007_v1_images' _file_list = sorted(root_dir.glob(f'{parent}/*/*.tif')) if len(ch := self.image_ch) == 1: if ch[0] == 'DNA': file_list = _file_list[::2] elif ch[0] == 'actin': file_list = _file_list[1::2] else: raise ValueError("Set `image_ch` in ('DNA', 'actin')") elif len(ch) == 2: file_list = bundle_list(_file_list, 2) else: raise ValueError("Set `image_ch` in ('DNA', 'actin') or all") return file_list @cached_property def anno_dict(self) -> Union[Dict[int, Path], Dict[int, BundledPath]]: root_dir = self.root_dir parent = 'BBBC007_v1_outlines' _anno_list = sorted(root_dir.glob(f'{parent}/*/*.tif')) if len(ch := self.anno_ch) == 1: if ch[0] == 'DNA': anno_list = _anno_list[::2] elif ch[0] == 'actin': anno_list = _anno_list[1::2] return dict((k, v) for k, v in enumerate(anno_list)) elif len(ch) == 2: anno_blist = bundle_list(_anno_list, 2) else: raise ValueError("Set `anno_ch` in ('DNA', 'actin') or all") return dict((k, v) for k, v in enumerate(anno_blist))