Source code for bioimageloader.collections._bbbc008

from functools import cached_property
from pathlib import Path
from typing import Dict, List, Optional, Sequence, Union

import albumentations
import cv2
import numpy as np
import tifffile
from skimage.util import img_as_float32

from ..base import MaskDataset
from ..types import BundledPath
from ..utils import bundle_list, stack_channels, stack_channels_to_rgb


[docs]class BBBC008(MaskDataset): """Human HT29 colon-cancer cells [1]_ F/B semantic segmentation The image set consists of 12 images. The samples were stained with Hoechst (channel 1), pH3 (channel 2), and phalloidin (channel 3). Hoechst labels DNA, which is present in the nucleus. Phalloidin labels actin, which is present in the cytoplasm. The last stain, pH3, indicates cells in mitosis; whereas this was important for Moffat et al.'s screen, it is irrelevant for segmentation and counting, so this channel is left out. Parameters ---------- root_dir : str Path to root directory output : {'both', 'image', 'mask'}, default: 'both' Change outputs. 'both' returns {'image': image, 'mask': mask}. transforms : albumentations.Compose, optional An instance of Compose (albumentations pkg) that defines augmentation in sequence. num_samples : int, optional Useful when `transforms` is set. Define the total length of the dataset. If it is set, it overrides ``__len__``. grayscale : bool, default: False Convert images to grayscale grayscale_mode : {'cv2', 'equal', Sequence[float]}, default: 'equal' How to convert to grayscale. If set to 'cv2', it follows opencv implementation. Else if set to 'equal', it sums up values along channel axis, then divides it by the number of expected channels. image_ch : {'DNA', 'actin'}, default: ('DNA', 'actin') Which channel(s) to load as image. Make sure to give it as a Sequence when choose a single channel. anno_ch : {'DNA', 'actin'}, default: ('DNA',) Which channel(s) to load as annotation. Make sure to give it as a Sequence when choose a single channel. Notes ----- - Annotation F/B: BG=1, FG=0; very annoying... References ---------- .. [1] https://bbbc.broadinstitute.org/BBBC008 .. [2] Carpenter et al., Genome Biology, 2006 See Also -------- MaskDataset : Super class Dataset : Base class DatasetInterface : Interface """ # Dataset's acronym acronym = 'BBBC008' def __init__( self, root_dir: str, *, output: str = 'both', transforms: Optional[albumentations.Compose] = None, num_samples: Optional[int] = None, grayscale: bool = False, grayscale_mode: Union[str, Sequence[float]] = 'equal', # specific to this dataset image_ch: Sequence[str] = ('DNA', 'actin',), anno_ch: Sequence[str] = ('DNA',), **kwargs ): self._root_dir = root_dir self._output = output self._transforms = transforms self._num_samples = num_samples self._grayscale = grayscale self._grayscale_mode = grayscale_mode # specific to this dataset self.image_ch = image_ch self.anno_ch = anno_ch if not any([ch in ('DNA', 'actin') for ch in anno_ch]): raise ValueError("Set `anno_ch` in ('DNA', 'actin') in sequence")
[docs] def get_image(self, p: Union[Path, BundledPath]) -> np.ndarray: if isinstance(p, Path): img = tifffile.imread(p) img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) else: # ch1 to red, ch3 to blue img = stack_channels_to_rgb(tifffile.imread, p, 0, 2, 1) return img_as_float32(img)
[docs] def get_mask(self, p: Union[Path, BundledPath]) -> np.ndarray: if isinstance(p, Path): mask = tifffile.imread(p) else: mask = stack_channels(tifffile.imread, p) # dtype=bool originally and bool is not well handled by albumentations return 255 * (~mask).astype(np.uint8)
@cached_property def file_list(self) -> Union[List[Path], List[BundledPath]]: parent = 'human_ht29_colon_cancer_2_images' file_list = sorted(self.root_dir.glob(f'{parent}/*.tif')) if len(ch := self.image_ch) == 1: if ch[0] == 'DNA': file_list = file_list[::2] elif ch[0] == 'actin': file_list = file_list[1::2] else: raise ValueError("Set `anno_ch` in ('DNA', 'actin')") return file_list elif len(ch) == 2: file_blist = bundle_list(file_list, 2) else: raise ValueError("Set `anno_ch` in ('DNA', 'actin') or all") return file_blist @cached_property def anno_dict(self) -> Union[Dict[int, Path], Dict[int, BundledPath]]: parent = 'human_ht29_colon_cancer_2_foreground' anno_list = sorted(self.root_dir.glob(f'{parent}/*.tif')) if len(ch := self.anno_ch) == 1: if ch[0] == 'DNA': anno_list = anno_list[::2] elif ch[0] == 'actin': anno_list = anno_list[1::2] return dict((k, v) for k, v in enumerate(anno_list)) elif len(ch) == 2: anno_blist = bundle_list(anno_list, 2) else: raise ValueError return dict((k, v) for k, v in enumerate(anno_blist))