Source code for bioimageloader.collections._bbbc013

from functools import cached_property
from pathlib import Path
from typing import List, Optional, Sequence, Union

import albumentations
import cv2
import numpy as np
from PIL import Image
from skimage.util import img_as_float32

from ..base import Dataset
from ..types import BundledPath
from ..utils import bundle_list, stack_channels_to_rgb


[docs]class BBBC013(Dataset): """Human U2OS cells cytoplasm–nucleus translocation The images were acquired at BioImage on the IN Cell Analyzer 3000 using the Trafficking Data Analysis Module, with one image per channel (Channel 1 = FKHR-GFP; Channel 2 = DNA). Image size is 640 x 640 pixels. Images are available in native FRM format or 8-bit BMP. Parameters ---------- root_dir : str Path to root directory transforms : albumentations.Compose, optional An instance of Compose (albumentations pkg) that defines augmentation in sequence. num_samples : int, optional Useful when ``transforms`` is set. Define the total length of the dataset. If it is set, it overwrites ``__len__``. grayscale : bool, default: False Convert images to grayscale grayscale_mode : {'equal', 'cv2', Sequence[float]}, default: 'equal' How to convert to grayscale. If set to 'cv2', it follows opencv implementation. Else if set to 'equal', it sums up values along channel axis, then divides it by the number of expected channels. image_ch : {'GFP', 'DNA'}, default: ('GFP', 'DNA') Which channel(s) to load as image. Make sure to give it as a Sequence when choose a single channel. Notes ----- - Two formats are available; FRM and BMP References ---------- .. [1] https://bbbc.broadinstitute.org/BBBC013 See Also -------- Dataset : Base class DatasetInterface : Interface """ # Dataset's acronym acronym = 'BBBC013' def __init__( self, root_dir: str, *, transforms: Optional[albumentations.Compose] = None, num_samples: Optional[int] = None, grayscale: bool = False, grayscale_mode: Union[str, Sequence[float]] = 'equal', # specific to this dataset image_ch: Sequence[str] = ('GFP', 'DNA',), **kwargs ): self._root_dir = root_dir self._transforms = transforms self._num_samples = num_samples self._grayscale = grayscale self._grayscale_mode = grayscale_mode # specific to this dataset self.image_ch = image_ch if not any([ch in ('GFP', 'DNA') for ch in image_ch]): raise ValueError("Set `image_ch` in ('GFP', 'DNA') in sequence")
[docs] def get_image(self, p: Union[Path, BundledPath]) -> np.ndarray: if isinstance(p, Path): img = np.asarray(Image.open(p)) img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) else: img = stack_channels_to_rgb(Image.open, p) return img_as_float32(img)
@cached_property def file_list(self) -> Union[List[Path], List[BundledPath]]: root_dir = self.root_dir parent = 'BBBC013_v1_images_bmp' file_list = sorted(root_dir.glob(f'{parent}/*.BMP'), key=self._sort_key) if len(ch := self.image_ch) == 1: if ch[0] == 'GFP': return file_list[::2] elif ch[0] == 'DNA': return file_list[1::2] return bundle_list(file_list, 2) @staticmethod def _sort_key(p: Path): channel, ind, t, subind = p.stem.split('-') return '-'.join([ind, t, subind, channel])