Source code for bioimageloader.collections._bbbc014

from functools import cached_property
from pathlib import Path
from typing import List, Optional, Sequence, Union

import albumentations
import cv2
import numpy as np
from PIL import Image
from skimage.util import img_as_float32

from ..base import Dataset
from ..types import BundledPath
from ..utils import bundle_list, imread_asarray, stack_channels_to_rgb


[docs]class BBBC014(Dataset): """Human U2OS cells cytoplasm–nucleus translocation This 96-well plate has images of cytoplasm to nucleus translocation of the transcription factor NFκB in MCF7 (human breast adenocarcinoma cell line) and A549 (human alveolar basal epithelial) cells in response to TNFα concentration. Images are at 10x objective magnification. The plate was acquired at Vitra Bioscience on the CellCard reader. For each well there is one field with two images: a nuclear counterstain (DAPI) image and a signal stain (FITC) image. Image size is 1360 x 1024 pixels. Images are in 8-bit BMP format. Parameters ---------- root_dir : str Path to root directory transforms : albumentations.Compose, optional An instance of Compose (albumentations pkg) that defines augmentation in sequence. num_samples : int, optional Useful when ``transforms`` is set. Define the total length of the dataset. If it is set, it overwrites ``__len__``. grayscale : bool, default: False Convert images to grayscale grayscale_mode : {'equal', 'cv2', Sequence[float]}, default: 'equal' How to convert to grayscale. If set to 'cv2', it follows opencv implementation. Else if set to 'equal', it sums up values along channel axis, then divides it by the number of expected channels. image_ch : {'DAPI', 'FITC'}, default: ('DAPI', 'FITC') Which channel(s) to load as image. Make sure to give it as a Sequence when choose a single channel. Notes ----- - Second channel is usually very clear with a few artifacts - Biological annotation - CellProfiler's LoadText module format annotation also available (not implemented) - Zoom in? References ---------- .. [1] https://bbbc.broadinstitute.org/BBBC014 See Also -------- Dataset : Base class DatasetInterface : Interface """ # Dataset's acronym acronym = 'BBBC014' def __init__( self, root_dir: str, *, transforms: Optional[albumentations.Compose] = None, num_samples: Optional[int] = None, grayscale: bool = False, grayscale_mode: Union[str, Sequence[float]] = 'equal', # specific to this dataset image_ch: Sequence[str] = ('DAPI', 'FITC'), **kwargs ): self._root_dir = root_dir self._transforms = transforms self._num_samples = num_samples self._grayscale = grayscale self._grayscale_mode = grayscale_mode # specific to this dataset self.image_ch = image_ch if not any([ch in ('DAPI', 'FITC') for ch in image_ch]): raise ValueError("Set `image_ch` in ('DAPI', 'FITC') in sequence")
[docs] def get_image(self, p: Union[Path, BundledPath]) -> np.ndarray: if isinstance(p, Path): img = imread_asarray(p) img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) else: img = stack_channels_to_rgb(Image.open, p, 1, 2, 0) return img_as_float32(img)
@cached_property def file_list(self) -> Union[List[Path], List[BundledPath]]: root_dir = self.root_dir parent = 'BBBC014_v1_images' file_list = sorted(root_dir.glob(f'{parent}/*.Bmp'), key=self._sort_key) if len(ch := self.image_ch) == 1: if ch[0] == 'DAPI': return file_list[::2] elif ch[0] == 'FITC': return file_list[1::2] return bundle_list(file_list, 2) @staticmethod def _sort_key(p: Path): channel, ind, t, subind, _ = p.stem.split('-') return '-'.join([ind, t, subind, channel])