Source code for bioimageloader.collections._bbbc015

from functools import cached_property
from pathlib import Path
from typing import List, Optional, Sequence, Union

import albumentations
import numpy as np
from skimage.util import img_as_float32

from ..base import Dataset
from ..types import BundledPath
from ..utils import bundle_list, imread_asarray, stack_channels_to_rgb


[docs]class BBBC015(Dataset): """Human U2OS cells transfluor The images are of a human osteosarcoma cell line (U2OS) co-expressing beta2 (b2AR) adrenergic receptor and arrestin-GFP protein molecules. The receptor was modified-type that generates "vesicle-type" spots upon ligand stimulation. The plate was acquired on iCyte imaging cytometer with iCyte software version 2.5.1. Image file format is JPEG with one image for green channel and one image for crimson channel. Image size is 1000 x 768 pixels. This image set has a portion of a 96-well plate containing 3 replica rows and 12 concentration points of isoproterenol. In each well four fields were acquired. File name structure: <well-number>_<field>_<channel>.JPG Parameters ---------- root_dir : str Path to root directory transforms : albumentations.Compose, optional An instance of Compose (albumentations pkg) that defines augmentation in sequence. num_samples : int, optional Useful when ``transforms`` is set. Define the total length of the dataset. If it is set, it overwrites ``__len__``. grayscale : bool, default: False Convert images to grayscale grayscale_mode : {'cv2', 'equal', Sequence[float]}, default: 'equal' How to convert to grayscale. If set to 'cv2', it follows opencv implementation. Else if set to 'equal', it sums up values along channel axis, then divides it by the number of expected channels. image_ch : {'b2AR', 'arrestin'}, default: ('b2AR', 'arrestin') Which channel(s) to load as image. Make sure to give it as a Sequence when choose a single channel. Notes ----- - 2 channels (Green, Crimson?), texture in green channel - Crimson channel...? - RGB channel is all the same in each image file References ---------- .. [1] https://bbbc.broadinstitute.org/BBBC015 See Also -------- Dataset : Base class DatasetInterface : Interface """ # Dataset's acronym acronym = 'BBBC015' def __init__( self, root_dir: str, *, transforms: Optional[albumentations.Compose] = None, num_samples: Optional[int] = None, grayscale: bool = False, grayscale_mode: Union[str, Sequence[float]] = 'equal', # specific to this dataset image_ch: Sequence[str] = ('b2AR', 'arrestin'), **kwargs ): self._root_dir = root_dir self._transforms = transforms self._num_samples = num_samples self._grayscale = grayscale self._grayscale_mode = grayscale_mode # specific to this dataset self.image_ch = image_ch if not any([ch in ('b2AR', 'arrestin') for ch in image_ch]): raise ValueError("Set `image_ch` in ('b2AR', 'arrestin') in sequence")
[docs] def get_image(self, p: Union[Path, BundledPath]) -> np.ndarray: # RGB is all the same if isinstance(p, Path): img = imread_asarray(p) else: img = stack_channels_to_rgb( lambda x: imread_asarray(x)[..., 0], p, 1, 0, 2 ) return img_as_float32(img)
@cached_property def file_list(self) -> Union[List[Path], List[BundledPath]]: root_dir = self.root_dir parent = 'BBBC015_v1_images' file_list = sorted(root_dir.glob(f'{parent}/*.JPG')) if len(ch := self.image_ch) == 1: if ch[0] == 'b2AR': return file_list[::2] elif ch[0] == 'arrestin': return file_list[1::2] return bundle_list(file_list, 2)