[docs]classBBBC021(Dataset):"""Human MCF7 cells – compound-profiling experiment [1]_ The images are of MCF-7 breast cancer cells treated for 24 h with a collection of 113 small molecules at eight concentrations. The cells were fixed, labeled for DNA, F-actin, and Β-tubulin, and imaged by fluorescent microscopy as described [Caie et al. Molecular Cancer Therapeutics, 2010]. There are 39,600 image files (13,200 fields of view imaged in three channels) in TIFF format. We provide the images in 55 ZIP archives, one for each microtiter plate. The archives are ~750 MB each. Parameters ---------- root_dir : str Path to root directory transforms : albumentations.Compose, optional An instance of Compose (albumentations pkg) that defines augmentation in sequence. num_samples : int, optional Useful when ``transforms`` is set. Define the total length of the dataset. If it is set, it overwrites ``__len__``. grayscale : bool, default: False Convert images to grayscale grayscale_mode : {'equal', 'cv2', Sequence[float]}, default: 'equal' How to convert to grayscale. If set to 'cv2', it follows opencv implementation. Else if set to 'equal', it sums up values along channel axis, then divides it by the number of expected channels. image_ch : {'DNA', 'actin', 'tublin'}, default: ('DNA', 'actin', 'tublin') Which channel(s) to load as image. Make sure to give it as a Sequence when choose a single channel. Notes ----- - HUGE dataset - 3 channels - w1 (DNA) -> Blue - w2 (actin?) -> Green - w4 (tublin??)-> Red - UINT16 References ---------- .. [1] https://bbbc.broadinstitute.org/BBBC021 See Also -------- Dataset : Base class DatasetInterface : Interface """# Dataset's acronymacronym='BBBC021'def__init__(self,root_dir:str,*,transforms:Optional[albumentations.Compose]=None,num_samples:Optional[int]=None,grayscale:bool=False,grayscale_mode:Union[str,Sequence[float]]='equal',# # specific to this datasetimage_ch:Sequence[str]=('DNA','actin','tublin'),**kwargs):self._root_dir=root_dirself._transforms=transformsself._num_samples=num_samplesself._grayscale=grayscaleself._grayscale_mode=grayscale_modeself.image_ch=image_chifnotany([chin('DNA','actin','tublin')forchinimage_ch]):raiseValueError("Set `image_ch` in ('DNA', 'actin', 'tublin') in sequence")