import json
import os.path
from functools import cached_property
from pathlib import Path
from typing import List, Optional, Sequence, Union
import albumentations
import numpy as np
from skimage.util import img_as_float32
from ..base import Dataset
from ..utils import imread_asarray
[docs]class BBBC041(Dataset):
    """P. vivax (malaria) infected human blood smears [1]_
    Images are in .png or .jpg format. There are 3 sets of images consisting of
    1364 images (~80,000 cells) with different researchers having prepared each
    one: from Brazil (Stefanie Lopes), from Southeast Asia (Benoit Malleret),
    and time course (Gabriel Rangel). Blood smears were stained with Giemsa
    reagent.
    These images were contributed by Jane Hung of MIT and the Broad Institute in
    Cambridge, MA. [1]_
    There is also a Github reposity that lists malaria parasite imaging datasets
    (blood smears) [2]_.
    Parameters
    ----------
    root_dir : str
        Path to root directory
    transforms : albumentations.Compose, optional
        An instance of Compose (albumentations pkg) that defines augmentation in
        sequence.
    num_samples : int, optional
        Useful when ```transforms``` is set. Define the total length of the
        dataset. If it is set, it overwrites ``__len__``.
    grayscale : bool, default: False
        Convert images to grayscale
    grayscale_mode : {'cv2', 'equal', Sequence[float]}, default: 'cv2'
        How to convert to grayscale. If set to 'cv2', it follows opencv
        implementation. Else if set to 'equal', it sums up values along channel
        axis, then divides it by the number of expected channels.
    training : bool, default: True
        Load training set if True, else load testing one
    Notes
    -----
    - Label categories: all 7 cats, ['difficult', 'gametocyte', 'leukocyte',
      'red blood cell', 'ring', 'schizont', 'trophozoite']
    - 1208/120 training/test split. So not 1368 images as written in the
      description.
    - png and jpg extension; training images are in RGB space in PNG format,
      while test images are in YUV space in JPEG format.
    - YUV will be automatically detected when read and cast to RGB
    - Two resolutions; depending on training/test: (1200, 1600) for training,
      (1383, 1944) for test
    References
    ----------
    .. [1] https://bbbc.broadinstitute.org/BBBC041
    .. [2] https://github.com/tobsecret/Awesome_Malaria_Parasite_Imaging_Datasets
    See Also
    --------
    MaskDataset : Super class
    Dataset : Base class
    DatasetInterface : Interface
    """
    # Dataset's acronym
    acronym = 'BBBC041'
    def __init__(
        self,
        root_dir: str,
        *,
        transforms: Optional[albumentations.Compose] = None,
        num_samples: Optional[int] = None,
        grayscale: bool = False,
        grayscale_mode: Union[str, Sequence[float]] = 'cv2',
        # specific to this dataset
        training: bool = True,
        **kwargs
    ):
        self._root_dir = root_dir
        self._transforms = transforms
        self._num_samples = num_samples
        self._grayscale = grayscale
        self._grayscale_mode = grayscale_mode
        # specific to this one here
        self.training = training
[docs]    def get_image(self, p: Path) -> np.ndarray:
        img = imread_asarray(p)
        return img_as_float32(img) 
    @cached_property
    def file_list(self) -> List[Path]:
        root_dir = self.root_dir
        file_list = []
        for name in self.ids:
            # Dont' know why they put '/' at front in json
            file_list.append(root_dir / name.lstrip('/'))
        return file_list
    @cached_property
    def ids(self) -> list:
        return [d['image']['pathname'] for d in self.metadata]
    @cached_property
    def metadata(self) -> List[dict]:
        name = 'training.json' if self.training else 'test.json'
        p = self.root_dir / name
        with open(p, 'r') as f:
            data = json.load(f)
        return data