Source code for bioimageloader.collections._digitpath

import os.path
from functools import cached_property
from pathlib import Path
from typing import Dict, List, Optional, Sequence, Union

import albumentations
import numpy as np
import tifffile
from PIL import Image
from skimage.util import img_as_float32

from ..base import MaskDataset


[docs]class DigitalPathology(MaskDataset): """Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases [1]_ Parameters ---------- root_dir : str Path to root directory output : {'both', 'image', 'mask'}, default: 'both' Change outputs. 'both' returns {'image': image, 'mask': mask}. transforms : albumentations.Compose, optional An instance of Compose (albumentations pkg) that defines augmentation in sequence. num_samples : int, optional Useful when ``transforms`` is set. Define the total length of the dataset. If it is set, it overwrites ``__len__``. grayscale : bool, default: False Convert images to grayscale grayscale_mode : {'cv2', 'equal', Sequence[float]}, default: 'cv2' How to convert to grayscale. If set to 'cv2', it follows opencv implementation. Else if set to 'equal', it sums up values along channel axis, then divides it by the number of expected channels. Notes ----- - Annotation is partial - Boolean mask to UINT8 mask (0, 255) References ---------- .. [1] A. Janowczyk and A. Madabhushi, “Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases,” J Pathol Inform, vol. 7, Jul. 2016, doi: 10.4103/2153-3539.186902. See Also -------- MaskDataset : Super class Dataset : Base class DatasetInterface : Interface """ # Dataset's acronym acronym = 'DigitPath' def __init__( self, root_dir: str, *, output: str = 'both', transforms: Optional[albumentations.Compose] = None, num_samples: Optional[int] = None, grayscale: bool = False, grayscale_mode: Union[str, Sequence[float]] = 'cv2', **kwargs ): self._root_dir = os.path.join(root_dir, 'nuclei') self._output = output self._transforms = transforms self._num_samples = num_samples self._grayscale = grayscale self._grayscale_mode = grayscale_mode
[docs] def get_image(self, p: Path) -> np.ndarray: tif = tifffile.imread(p) return img_as_float32(tif)
[docs] def get_mask(self, p: Path) -> np.ndarray: mask = np.asarray(Image.open(p)) return 255 * mask.astype(np.uint8)
def __len__(self): if self.num_samples: return self.num_samples return len(self.file_list) @cached_property def file_list(self) -> List[Path]: root_dir = self.root_dir suffix = 'original' file_list = sorted(root_dir.glob(f'*{suffix}.tif')) return file_list @cached_property def anno_dict(self) -> Dict[int, Path]: root_dir = self.root_dir suffix = 'mask' anno_list = sorted(root_dir.glob(f'*{suffix}.png')) return dict((k, v) for k, v in enumerate(anno_list))